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Abstract. Short-time Fourier transform is a time-frequency method
commonly used to analyze signals, particularly in EEGs. It has shown
acceptable results for the identification of different actions, such as sleep
disorders, epilepsy, and others, and in applications as brain-computer
interfaces. However, the selection of short time Fourier transform pa-
rameters is not a trivial task, as the variability of these directly affects
the resolution spectrogram, from which features are extracted to deter-
mine the constructed models in the classification stage. In this paper,
experiments for determining STFT parameters such as window type and
length, and overlapping are explored. As a case study, an EEG epilepsy
database is used to identify healthy people versus patients suffering
epileptic seizures, finding that the parameters modify the spectrogram vi-
sualization in terms of time/frequency and classification. Based on these
experiments, it was concluded that the proposed strategy supports the
correct selection of parameters that positively impact the accuracy of
the results obtained.

Keywords: EEG Signals, Short-time Fourier Transform, Spectrograms,
Seizure Classification.

1 Introduction

Electroencephalography (EEG) is a brain monitoring method based on measure-
ments of electrical activity generated by the brain. An EEG shows evidence of
how the brain performs the bodily functions over time, such as the pumping
of the heart, gland secretion, breathing, and internal temperature regulation,
among others [10]. Nowadays, EEGs are used by scientists and physicians for
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analyzing brain functions and diagnosing neurological disorders, such as brain tu-
mors, head injuries, sleep disorders, dementia, epilepsy, Alzheimer’s, seizure dis-
order, deficit attention disorder, anxiety disorder, fetal alcohol syndrome, autism,
as well as monitoring the effects of anesthesia during surgery [3, 5, 6, 8, 16]. The
EEG is an appropriate tool to aid in the diagnosis of diseases, epilepsy in par-
ticular. This inexpensive tool is useful for showing the underlying manifestation
of epilepsy. EEG signals in people with epilepsy show two kinds of abnormal ac-
tivity: ictal (during an epileptic seizure) and interictal (between seizures) [8, 16].
EEG analysis for diagnosing epilepsy started in 1970, and since then it has been
an area of interest for researchers due to its non-stationary features; at present,
most problems in seizure detection are related to finding events (ictal and inter-
ictal) during epileptic seizures [8].

Different methodologies have been proposed to identify epileptic seizures
in EEG signals based on frequency, time, wavelet transforms, and Gabor fil-
ters [7, 8, 14]. However, the nature of the EEG signals (non-stationary) involves
specific aspects when employing techniques based on frequency or time [8], as
the features obtained from these methods do not provide enough information
from EEG signals alone [1]. Techniques based on Time-frequency analysis are
considered more complete than some others because they decompose the sig-
nal in frequencies over signal time, to analyze non-stationary signals such as
EEGs. Time-frequency representations can be applied to EEG signals, as the
resulting transform can be treated as an image in order to extract features,
which has shown acceptable results in terms of accuracy for different applica-
tions [13]. Short-Time Fourier Transform (STFT) is a time-frequency represen-
tation commonly used in signal analysis, as well as in digital image processing,
voice processing, biology, medicine [9], and in other applications, such as Elec-
troencephalographic (EEG) signals analysis (STFT allows a representation in
time-frequency of the EEGs, which shows a different visualization for analysis).

From EEG spectrograms different features can be extracted to identify sev-
eral tasks (imagined writing, motor images, epilepsy, alcoholism, etc.) [12]. In
most of these, the STFT parameters are pre-defined by the programming lan-
guage toolkits when beginning the analysis. Parameter selection is important, as
it helps to minimize two problems: poor spectrogram resolution and a dearth of
relevant features, which determine the results in the classification; in addition,
the process of assigning specific parameter values for any application is a difficult
task. Thus, different STFT parameters are analyzed in this work in order to iden-
tify relevant features that support the classification of epilepsy stages (seizure
and normal) and their spectrograms. Initially, EEG signals are obtained from
a dataset and STFT is applied with different parameters; after that, an image
generated from the spectrogram is converted to grayscale to extract features; to-
tal energy and spectral peaks are obtained for training three different classifiers
and evaluating STFT parameters; the results are shown in terms of the accuracy
in binary classification and the visualization of some spectrograms. The STFT
parameters of the experimentation were selected from main and side lobes of the
windows; first, the width of the main lobe was analysed and the windows with
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the thinnest were chosen, after the side lobes were observed and from its height
with respect to the main lobe were selected the windows with side lobes lowest.
The overlapping is proposed from window properties, where are selected in the
case of lobes are added or attenuated when windows are overlapped. This paper
is organized as follows: section 2 introduces the methodology and the related
theory; section 3 provides a description of EEG dataset and the experimental
analysis; Finally, section 4 presents our conclusions and future work.

2 Methodology

2.1 Short-time Fourier Transform

In practical applications, STFT is implemented as a sliding window adjusted to
a signal. Given an input signal xT of arbitrary duration, segments are extracted
at regular intervals using a time-limited window wn; The segments (frames) of
the signal can be expressed as [4]:

xl[n] = wn ∗ x[n+ lL], 0 ≤ n ≤ N − 1, (1)

where N is the length of the window, l is the frame index, and L is the hop
size, that is, the sample spacing between consecutive applications of the sliding
extraction window; the index n is a local time index relative to the beginning
of the window displacement. The expression x[n+ lL] represents a position over
signal, n is representing the phase to shift the window, ∗ represents a operation
likewise modulation between two terms. Finally, the discrete Fourier Transform
(DFT) [4] is applied to each frame of the signal, as follows:

X[k, l] =

N−1∑

n=0

xl[n]e
−i2πnk/K =

N−1∑

n=0

wn ∗ x[n+ lL]e−i2πnk/K , (2)

where K is the size of the DFT and k is a frequency index or bin index.
The STFT X[k, l] then characterizes the local time-frequency behavior of the
signal around time lL and bin k; for a sampling rate of Fs, these discrete
indices correspond to the continuous time lL/Fs and frequency kFs/K [4]. To
simplify the notation, a radial frequency of:

ωk = 2πk/K, (3)

is frequently included; then, the expression STFT becomes:

X[k, l] =

N−1∑

n=0

wn ∗ x[n+ lL]e−iωkn. (4)

Applying the window over time, the STFT returns a spectral representation
of a time segment of the input signal; interpreting X[k, l] as a function of the
frequency k for each value of the time index l, the STFT corresponds to some
series of spectra located in time. Alternatively, the STFT can be seen as a time
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function for each frequency; interpreting X[k, l] as a time serie that is a function
of l for each bin k(points to calculate the DFT), the STFT corresponds to a
filter bank that decomposes the input signal over frequency channels or sub-
bands [4]. These two interpretations of the STFT are represented with respect
to the time-frequency plane. These changes to time and frequency have become
common in the modern literature on signal processing as a way of representing
the time and frequency resolutions of signals.

One drawback of STFT is the resolution required to obtain spectrograms,
caused mainly by the length of the window. A narrow window offers a better
resolution in time, but not in frequency, while a wide window provides good
resolution in frequency, but does not perform as well in time resolution. This
means that it is difficult to achieve a good location in both time and frequency
domains simultaneously, because the STFT depends on only one window.

The STFT process is a method that begins by windowing a signal into
shorter segments, where phase windows can be overlapped; Fast Fourier trans-
form (FFT) is applied to each segment separately [15] and each result is joined
to form the spectrogram, which can be manipulated, and then the inverse FFT
is applied to return each segment to the time domain.

Therefore, to apply the STFT to signals, different parameters should be con-
sidered; for example: window type and length, main lobe length (corresponding
to window type), FFT points and overlapping. These parameters that can affect
the resolution spectrogram are briefly described in the following subsections.

2.2 Windowing

Windowing is a phase that involves applying a function to a signal or segment
over time, which is then used in the Fourier transform or the STFT. The Fourier
transform is commonly implemented for the analysis of non-periodic and station-
ary signals; for non-stationary signals, one option is STFT, which analyzes the
signal by segments, making use of the windows, since this sub-signal is supposed
to be a stationary signal. A good analysis depends essentially on the type of
window and the parameters that can be modified, which will be discussed later.

First, the window type is selected; Figure 1 (a) shows different windows
(Bartlett, Blackman, Hamming, Gaussian, Kaiser, rectangular, Hanning) with
a length of 64 points and their spectra (b); these windows are the most com-
mon in the signal analysis literature. Initially, when a window is applied to the
signal, it is modulated as the window way along time segment; the rectangular
window is the ideal in time, since signals are not modified when it is applied and
with this, it would not adjust to the window type due to the shape as a box,
which only cut the signal and Fourier transform is applied. This window has a
thin main lobe; although, its secondary lobes are very high. The main idea is to
have something balanced, and the Gaussian window is optimal due to its very
similar wave form spectrum; however, it cannot be obtained computationally, so
approximations are implemented that show a main lobe that is average in terms
of width, although the secondary lobes are not the smallest. The Blackman win-
dow shows the smallest secondary lobes, followed by Hanning, which has a small
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main lobe in its window; this window is also a variant of the raised cosine, which
is very similar in both spectrum and window. Taking into account the windows
in Figure 1, it can be seen that the main lobes are in ascending order by window
length: Blackman, Gaussian, Hamming, Hanning, Kaiser and Rectangular; the
secondary lobes are listed in relation to height (from highest to lowest energy):
Rectangular, Kaiser, Hamming, Gaussian, Hanning, and Blackman.

Fig. 1. Windows (a): (....)-Blackman, ( . .)-Gaussian, (-.-.)-Hamming, (–.–)-Hanning,
( )-Kaiser, and ( )-Rectangular, 64-point length and their spectra(b).

On the other hand, temporal and frequency resolution can be obtained from
the STFT parameters; Figure 1 shows the relationship between these parameters,
where it can be seen that the spectrum is narrow for a wide rectangular window,
so its use is not advisable, while Hamming and Blackman maintain a less strict
relationship, since proportionally, it is not noticeable as in a rectangular window;
this is due to both windows being variants of a raised cosine and to the lobes
for both being smaller.

Considering a visual analysis from Figure 1 with main lobes and secondary
side lobes as main features, any window can be selected as an acceptable option,
because a thinner lobe shows frequencies close to that signal. In addition, the
secondary lobes show a lower energy dispersion, as most are concentrated in
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the main lobe; however, these are not the only parameters to be considered
in window analysis [11], although, a method based on spectral peaks might
suffice; therefore, one parameter that defines spectral peaks is the main lobe of
the windows, which represents peaks, and another is the secondary lobe height,
because energy is disperse among these. Thus, considering these two parameters,
the selected windows were: rectangular, which has a representation similar to the
Fourier Transform, as it does not have modification in time and its spectrum
has the thinnest main lobe; Gaussian, with a window similar to the spectrum;
Blackman, because it has the lowest secondary lobes; and Hanning, because it
has one thin main lobe and low secondary lobes.

2.3 Feature Extraction

In this work, features are obtained from EEG signal spectrograms. Spectral
peaks are found first, since these are related to relevant energy over some fre-
quency/time; after that, different features are extracted from the peaks. Finally,
volume features are calculated from all intensities of the spectrogram.

Spectral peaks. These peaks are calculated using the local maxima method,
which find local minima within a region and above a threshold from energy levels,
these are represented on the spectrogram. From a region or mask the peaks is
found with the method mentioned. Up to this point, other parameters have not
been analyzed, since these peaks depend on the window and the signal type,
which will be analyzed later.

Volume. Feature extraction is based on an approach that considers the spectro-
gram in a three-dimensional representation as a volume. All intensity points and
time and frequency coordinates were used to obtain the spectrogram volume.
Likewise, all intensities were added together to obtain the approximate energy.
The spectral peaks were used to calculate the surface area and the intensities
from the highest peaks were added; the area formed by peaks and volume from
all spectrogram points were calculated through a convex hull. Figure 2 shows
these five features, which are concatenated to obtain the feature vector.

3 Results

3.1 Experimental Approach

This section presents an evaluation of STFT parameters such as overlapping and
window type and length. These experiments are concerned with the identification
of people experiencing epileptic seizures or healthy people. First, signals were ob-
tained from an EEG dataset (epileptic seizure); STFT with different windows
and overlapping (0% and 75%) was applied to each signal to obtain spectrograms,
which were converted to grayscale images; after that, peaks were found from
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Fig. 2. Features extracted form EEG signal: peak number, peak area, peak sum, in-
tensity point sum and intensity point volume.

regions, these are shaped by 2xminimaldistance + 1, where minimaldistance
between peaks is the separation between peaks; to find the maximum number
of peaks the value of 1 was used as a separation distance; a threshold was se-
lected from the minimum intensity of the spectrogram in grayscale. The features
describe below were extracted from the peaks.

For the experiments, four windows were taken into account, with Gaussian
being the closest to the ideal, the rectangular being the ideal in time, Black-
man having the smallest lobes, and Hanning maintaining the best relationship
between the minimum width of the main lobe and the height of the secondary
lobes. The number of FFT points are the same for the window length, which
is not relevant for resolution; a 75% overlapping was proposed, based on the
properties of the windows and their spectral responses.

This methodology was tested using an open access epilepsy EEG dataset from
Bonn University [2] with five subsets (Z,O,N,F, and S), each subset containing
100 EEG signals with 4097 samples, recorded at a sampling rate of 173.61 Hz
using a 128-channel amplifier system with an average common reference. Sets Z
and O were collected from five healthy volunteers. Sets N, F, and S were recorded
from five epileptic patients for each set. Records from set S were collected during
seizure activity, while sets N and F were gathered during seizure-free intervals.

From the epileptic dataset, two subsets (subset A and E) were used to classify
the signals, which correspond to healthy people and patients suffering an attack,
respectively. Firstly, the signals from healthy people (Figure 3) were analyzed
using different STFT parameters.

STFT was applied to EEG signals from subset A, as mentioned above, and
four windows with length (64) and without overlapping were used. The spec-
trograms generated are shown in Figure 4, which describes scattered energy,
because there are different events and frequencies over time; also, the spectro-
gram maintains its relationship with the corresponding spectrum. The energy is
more scattered along the vertical axis (frequency), while it is more noticeable in
(b), due to the width of the main lobe of Gaussian spectrum and the energy in
(a) not being as noticeable, since it has the narrowest main lobe (Rectangular).
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Fig. 3. EEG signal from an open eyes person in a relaxed state.

Fig. 4. Spectrogram from EEG signals of a healthy person in a relaxed state with
eyes open. Window length= 64, 0% overlapping: (a) Rectangular, (b) Gaussian , (c)
Blackman and (d) Hanning.

Comparing the spectra from Figures 4 and 5, only an elongation of the energy
on the horizontal axis (time) can be noted, although the windows are actually
focusing more on the frequencies shown along the vertical axis. Something similar
occurs when a single window is placed over the entire time from a signal: it
shows only one frequency; otherwise, when a narrow window is applied to short
segments from a signal, it shows changes over time, i.e., frequencies for each
window.

Fig. 5. Spectrogram from EEG signals from a healthy person in a relaxed state with
eyes open. Windows length= 128, 0% overlapping: (a) Rectangular, (b) Gaussian , (c)
Blackman and (d) Hanning.

Another interesting parameter is overlapping, which implies a more general
approach to the signal. When a high percentage of overlapping is applied, window
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n overlaps most of window n + 1, which could generate windows without side
lobes (as they cancel each other out); only windows with overlapping main lobes
cause the entire signal to resemble the application of a single window to the
entire signal. Of the eight spectra, Figures 6 and 7 are most similar to those
shown in Figures 4 and 5, but the overlap thins the energy shown over time.

Fig. 6. Spectrogram from EEG signals from a healthy person in a relaxed state with
eyes open. Window length= 64, 75% overlapping: (a) Rectangular, (b) Gaussian , (c)
Blackman, and (d) Hanning.

When the overlap is greater, the energy seems to be reduced along the x-axis
(time), and in terms of time-frequency resolution, a large window focused for the
frequency would have a better resolution with a higher percentage of overlap.

Fig. 7. Spectrogram from EEG signals from a healthy person in a relaxed state with
eyes open. Window length= 128, 75% overlapping: (a) Rectangular, (b) Gaussian , (c)
Blackman, and (d) Hanning.

Signals from subset E were also analyzed, which correspond to patients suf-
fering an epileptic seizure. The signal in Figure 8 represents an EEG of a person
suffering an attack; as in previous experiments, the same windows were used.

The higher-frequency spectrograms in Figures 9-12 show higher energy for
some sections in comparison to the spectrograms of a healthy person. This rep-
resentation is similar to both kinds of EEG signals, due to the parameters used
in these experiments. From the spectrograms of healthy people, energy activity
appears along time in terms of energy, possibly due to some event occurring in
different time intervals; this could be noted using a 64 Gaussian window. In the
opposite case, for epileptic patients, the energy is concentrated along time, show-
ing the energy as frequency by applying rectangular, Blackman, and Hanning
windows. The Gaussian window describes activity in time, and can be appre-
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Fig. 8. EEG signal from a person suffering an epileptic seizure.

ciated when using long windows (128), for example, the window used (128) in
Figure 12 with a 75% overlap.

Fig. 9. Spectrograms of EEG signals from a person suffering an epileptic seizure. Win-
dow length=64 and 0% overlapping(a) Rectangular, (b) Gaussian , (c) Blackman and
(d) Hanning.

Fig. 10. Spectrograms of EEG signals from a person suffering an epileptic seizure.
Window length=128 and 0% overlapping(a) Rectangular, (b) Gaussian , (c) Blackman
and (d) Hanning.

From the previous spectrograms, it can be seen that the data is better dis-
played in narrow or long windows. In these cases, narrow windows are ideal for
the EEG signals from healthy people and longer windows for the signals from
patients experiencing epileptic seizures.
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Fig. 11. Spectrograms of EEG signals from a person suffering an epileptic seizure.
Window length=64 and 75% overlapping(a) Rectangular, (b) Gaussian , (c) Blackman
and (d) Hanning.

Fig. 12. Spectrograms of EEG signals from a person suffering an epileptic seizure.
Window length=128 and 75% overlapping(a) Rectangular, (b) Gaussian , (c) Blackman
and (d) Hanning.

3.2 Classification

EEG signals were used to generate the spectrograms. Note that the energy is
distributed over time for EEG signals from healthy people, while for a person
suffering an epileptic attack, the energy expands along the frequency. Based on
this observation, windows could be generated for each phenomenon, as men-
tioned above. As part of the results, the proposed volume-based methodology
was used to extract features which were then evaluated by means of classification
algorithms, where the algorithm parameters were selected experimentally; the
results are shown in Table 1, where the first column shows the windows used
and the second describes the parameters, the first parameter is the size of the
window separated by a comma from the overlapping.

Different algorithms were used in the evaluation, such as multilayer per-
ceptron (MLP), linear and polynomial support vector machines (SVM), and 3-
nearest neighbors (KNN); this are shown in columns three through six; for this,
a 5-fold cross-validation was implemented, and the results are shown in terms of
accuracy percentage, i.e., the average from both correctly classified classes. For
MLP it had two layers with 100 units each one and 200 epochs, this classifier
does not reach the highest results, although its performance reach the most with
greater than or equal to 95%. Linear SVM seems to have the best results for all
the windows, obtaining 99% with a narrow Gaussian window and overlapping.
KNN had a performance similar to linear SVM, with an accuracy of 97.7 % with
the same 99% parameter. Finally, the performance of the polynomial SVM was
not as high in relation to all windows; however, it achieved a higher accuracy
than KNN, with 98.3 % for one case with a Gaussian window.
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Table 1 shows the highest accuracy for the Gaussian window; the character-
istics of this window make it the most balanced in terms of time-frequency reso-
lution due to the similarity of its spectrum to the window; the results were lower
for Blackman and Hanning windows, due to their characteristics, although they
are variants of the raised cosine and have a spectrum similar to their windows;
as in a Gaussian window, this result could be caused by the overlap. Finally,
the rectangular window has the lowest results; this does not mean that it is the
worst, but rather that it was not useful for this application. This experiment
was an initial phase of a complete analysis, which will be carried out in more
depth with other parameters in order explore their impact on the classification
process, adjust them to find the best classifications, and show how they influence
the feature extraction phase in a formal training process.

Table 1. Accuracy results from healthy people versus people suffering epileptic
seizures, using four different length windows and two overlapping percentages, with
four classifiers.

Window
Parameters
(size length,
ovelapping)

MLP
(%)

SVM
Linear
(%)

SVM
Polynomial

(%)

3-NN
(%)

Rectangular 64, 0 84.5 89.7 83.7 86.7

Rectangular 128, 0 88 89.3 88.3 88.3

Rectangular 64, 48 86 87.7 84.3 88.7

Rectangular 128, 96 86.5 79.6 56.6 78.3

Gaussian 64, 0 96.5 96.3 95.7 96.7

Gaussian 128, 0 94.5 94 91.3 91

Gaussian 64, 48 97 99 98.3 97.7

Gaussian 128, 96 96.6 96.6 88.3 96.3

Blackman 92.5, 0 88.3 88.3 90.7 92.3

Blackman 128, 0 90.5 91.6 86.6 88.3

Blackman 64, 48 93.5 96.7 86.6 95.7

Blackman 128, 96 95.5 88.7 75.3 90

Hanning 64, 0 93 90.3 90.7 93

Hanning 128, 0 87 91.6 89 88.7

Hanning 64, 48 95 96.6 91 95.3

Hanning 128, 96 95.5 89.3 77.3 89.3

The reported results were obtained from a general experimentation using
some STFT parameters, however, other parameters can be analysed as the en-
ergy percentage of the main lobe in relation with side lobes, and the overlap-
ping percentage; whether the parameters proposed are applied to solve another
problem the performance will depend of the feature extraction, due to the ex-
perimentation show the best results beginning with upper and lower bounds and
also the overlapping percentages that best fit the windows.
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4 Conclusions

In several works about EEG analysis, different parameters values are fixed in the
STFT but they are neither tested nor justified. From a brief theoretical analysis
and some experiments, it can be seen that these parameters are important, as
they affect the spectrogram. In particular, the width of the window and the over-
lap of the signal must be taken into account. A good choice of window could be
Blackman, Hanning, Haming, or Gaussian, due to their properties and spectral
behaviors. Gaussian window showed the best performance, and the next were
Blackman and Hanning; rectangular window was the lowest in the classification,
our experiments are based on peaks, thus, probably secondary lobes is affecting
the main lobe, which peak is obtained.

Due to the energy shown in the spectrograms, a window should probably be
proposed for each type of class, since the windows require different lengths if
energy is shown over time or frequency. In this paper, we noted that different
parameter affect spectrogram and performance, hence, these have to be selected
with a previous analysis, an experimental analysis could be not enough.

As future work, other data sets will be analyzed, since only two signals from
two classes from the epilepsy data database were analyzed in these experiments.
The experimentation in this paper for different parameters of the STFT was
very general and in future experimentation we consider to analyze the windows
with respect to spectrum, energy percentage, lobes, and other factors. The en-
ergy percentage of the main lobe with respect to the side lobes could be a good
parameter. In addition window lengths will be proposed based on the signal fre-
quencies.
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